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PROOF OF CONCEPT

The Random Utility Model (McFadden, 1974) is one of the canonical models used to
rationalize stochastic choice data. Intuitively, it can be thought of as fitting a distribution
over decision makers such that the expected choices over this distribution are equal to
the actual choice proportions observed in the data. However, not all stochastic choice
datasets have a random utility representation. For example, take a set of three alternatives,
X = {x, y, z}, and let the probability of choosing alternative x from the menu A ⊆ X

be denoted ρA(x). Choice data involving “stochastic cycles”, such as ρ{x,y}(x) = 0.6,
ρ{y,z}(y) = 0.6, and ρ{x,z}(z) = 0.6 have no distribution over “rational” decision makers
such that the expected choice proportions match this data. Further, the literature is yet to
unanimously support a measure of distance to rationality when no representation exists.
In this note, I generate an algorithm to rationalize stochastic choice data with a mixture of
both rational and irrational choice functions. This representation is designed to place more
weight on the rational actors within the system, and then allocate residual probabilities to
choice functions with increasing distance from the rational choice functions. This method
has an intuitive interpretation when thinking about these data as aggregations of individual
decision maker choices.

Let X represent the finite set of alternatives over which individuals will be choosing.
Assume |X| = n, and the set of all menus, denoted A is the set of all non-empty sub-
sets A ⊆ X\∅ over X. A choice function c : A → X is a mapping from a menu to
an alternative within that menu. Choice functions can be either rational or irrational
in the traditional sense. We denoted these sets of choice functions as CR and CI respectively.

For all c ∈ CR, there exists some (strict) linear order π on X such that, for all A ∈ A

c(A) = {a ∈ A : a ≻π b ∀ b ∈ A\{a}}
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In words, the choice function represents an agent with a complete, transitive, and asym-
metric ranking over X, and from each menu A, picks the best element in A according to
that ranking. As there are n! strict linear orders on a set of cardinality n, there are also n!
distinct choice functions in CR. CI is the set of all choice functions on X not in CR.

We will focus on stochastic choice datasets that are complete, meaning that we can
observe choice proportions for all alternatives over all menus. Let this dataset be repre-
sented as {ρA(a)}{a∈A,A∈A}. The dataset is random utility rationalizable if there exists
some probability measure µ ∈ ∆(CR) such that, for all a ∈ A and A ∈ A

ρA(a) = µ({c ∈ CR : c(A) = a})

But what happens when a dataset is not random utility rationalizable? In that case there
are a number of methods that we could use in order to interpret the ’consistency’ of such
choice data. A natural approach would be to expand the support of the rationalizing
distribution from the set of all rational choice functions into the set of irrational choice
functions. Given that this set now contains all possible choice functions, there will be a
rationalizing distribution for every dataset, and so we require conditioning in order to
make the rationalizing meaningful.

To do this, consider a single linear order π ∈ Π, and let the corresponding choice function
be labelled cπ(·). Define the set C1

π as the set of all choice functions that agree with cπ

over all menus besides one, in which they pick a different alternative. For example, if
X = {x, y, z} and π = x ≻ y ≻ z then the choice function cπ could be represented by the
vector in Table 1. The matrix of choice vectors that are one mistake away from cπ are
shown in Table 2.

Alternative Menu cπ(·)
x {x, y} 1
y {x, y} 0
x {x, z} 1
z {x, z} 0
y {y, z} 1
z {y, z} 0
x {x, y, z} 1
y {x, y, z} 0
z {x, y, z} 0

Table 1: Rational Choice Vector: x ≻ y ≻ z

Alternative Menu c1
π(·)

x {x, y} 0 1 1 1 1
y {x, y} 1 0 0 0 0
x {x, z} 1 0 1 1 1
z {x, z} 0 1 0 0 0
y {y, z} 1 1 0 1 1
z {y, z} 0 0 1 0 0
x {x, y, z} 1 1 1 0 0
y {x, y, z} 0 0 0 1 0
z {x, y, z} 0 0 0 0 1

Table 2: Irrational Choice Matrix C1
π
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Let C1 = ∪π∈ΠC1
π. In the same way that the original random utility rationalization

searched for a probability measure over the matrix CR, we can now look for a probability
measure over the matrix [CR, C1].

To put this concretely, suppose that CR is an i × j matrix and C1 is an i × k matrix. This
means that we have a maximal support cardinality of j + k. The weights can therefore also
be written as µ1, ..., µj , µj+1, ..., µj+k. The solution to this new problem takes the form of
some µ′ ∈ ∆([CR, C1]) such that

ρA(a) = µ′({c ∈ CR ∪ C1 : c(A) = a})

Due to the rate at which the number of columns in C1 increases with n, the likelihood of
there existing a probability measure on [CR, C1] is large. Further, a rationalizing probability
measure with most weight on these ‘mistaken’ choice functions does not have a particularly
generalizable interpretation. Therefore, it makes sense to push weight onto the rational
choice functions where possible. Fortunately, one of the major features of random utility
models is that they often provided a multiplicity of rationalizing measures. This can be
used in our model to select for the rationalzing measure that places most weight on the
rational choice functions.

We can place penalties on weights λ0 and λ1 such that λ0 > λ1 and stack them into
a vector λ⃗ where the first j elements are λ0 and the last k elements are λ1. We can
therefore look for a following solution:

max
µ

λ⃗µ

s.t. ρ = [CR, C1]µ

This will search among the rationalizing measures µ′ to find the one that places most
weight on the rational choice functions.

If there exists no such µ′ then we can continue iterating the process to [CR, C1, C2, ...] with
penalty terms λ0 > λ1 > ... until eventually we find a rationalizing measure.

In order to test this model, I have simulated a set of stochastic choice data in which
a pre-specified proportion of decisions are made according to rational choice functions,
and the remaining proportion are chosen at random. For example, if the proportion of
rational choice functions, frat = 0.5 and set set of available alterantives X = {x, y, z} then
we randomly select 3 of the 6 rational choice functions and build a dataset that may look
something like this:
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Alternative Menu x ≻ y ≻ z y ≻ x ≻ z z ≻ x ≻ y cI,1 cI,2 cI,3

x {x, y} 1 0 1 p4,1 p5,1 p6,1

y {x, y} 0 1 0 1 − p4,1 1 − p5,1 1 − p6,1

x {x, z} 1 1 0 p4,2 p5,2 p6,2

z {x, z} 0 0 1 1 − p4,2 1 − p5,2 1 − p6,2

y {y, z} 1 1 0 p4,3 p5,3 p6,3

z {y, z} 0 0 1 1 − p4,3 1 − p5,3 1 − p6,3

x {x, y, z} 1 0 0 p4,4 p5,4 p6,4

y {x, y, z} 0 1 0 p4,5 p5,5 p6,5

z {x, y, z} 0 0 1 1 − p4,4 − p4,5 1 − p5,4 − p5,5 1 − p6,4 − p6,5

Table 3: Simulation of irrational data, frat = 0.5

The first three columns of Table 3 correspond to rational choice functions, whereas the
final three consist of probabilities generated at random. We then take a random convex
combination of these columns to generate our simulated stochastic choice data ρ̂.

We first search over [CR] to see if there is a random utility representation in the tra-
ditional sense. If not, then we move to searching for a probability measure over [CR, C1].
Typically, one will exist when n = 3. This gives us a measure µ, and, because each choice
function in C1 can be mapped to a choice function in CR, we can break up the weights on
linear order π as µπ = µπ

R + µπ
I . The first term corresponds to the weight placed on the

rational choice function, cπ, and the second term corresponds to the weight placed on the
irrational choice function one mistake away from cπ.
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Figure 1: Rational and Irrational Weight Distributions

Figure 1 shows the average split of µR and µI as we increase the proportion of rational
choice functions/linear orders. Clearly, as the proportion of rational choice functions
increases, the average weight placed on rational choice functions increases and the average
weight placed on irrational choice functions decreases.

The figure above shows the aggregated split of rational and irrational choice weights.
However, our method of choice data simulation means that we actually know the distribu-
tion of rational and irrational choices. This means that we can observe how much irrational
versus rational weight is placed on each function conditional on whether they were rational
or irrational in the data simulation.
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Figure 2: Rational and Irrational Weights by Choice Function Type

Figure 2 shows exactly this. The left-hand column of figures shows the rational and
irrational weights placed on choice functions that were in fact rational in our dataset
(for example, the first three columns of Table 2). The x-axis once again represents the
proportion of functions that were rational. The right-hand column shows the rational
and irrational weights placed on the irrational choice functions. The first thing to note is
that the majority of weight is placed on the rational part of the function where possible,
as demonstrated by the blue line being above the red line in all figures. Interestingly,
the difference between the weight placed on rational versus irrational parts is greater for
rational choice functions than for irrational choice functions. Intuitively, one might expect
the irrational proportion of weight placed on rational choice functions to be equal to 0.
However, spillover from the irrational choice functions results in this not being the case.
Similarly, the rational weight placed on irrational choice functions is non-zero due to the
system extracting ‘rational behavior’ from the irrational choice probabilities.
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