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PROOF OF CONCEPT

Take daily percentage change data, where r; represents the percentage change at day t.
Assume that there are T observations. The first step is to fit an ARMA (p,q) model in order
to forecast changes in the expected value of daily returns. Next, fit an ARCH(d) model to
forecast conditional heteroskedasticity in residual variance. Step 3, use this information
to calculate a probability of the daily return being positive. Finally, optimize bounds on

probabilities to maximize profit.
Step 1.

An ARMA((p,q) model is defined as follows:
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In other words, today’s return is a linear combination of past returns and past ‘exogenous
shocks’. In other words, information that is not contained in the return data. We assume
that ¢, ~ N(0,0?), meaning that we can use maximum likelihood in order to solve for ¢

and 0 parameters. The log likelihood function is given as follows:
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Clearly, ¢; must be calculated recursively in order to be identified. Set ¢y = 0 and continue
from there, including all lags up to t — p for AR arguments and ¢ — g for MA arguments

where possible.



This maximum likelihood estimation will provide g% and 6 values for the specified model.

We can now calculate values of & and 74, where 7 = o + D01 ¢ire—i + >oay i (e — 7).

Next, use the ARCH(d) model to forecast o2, which is now allowed to vary with time. The

formula for this is .,
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This can again be solved using maximum likelihood by assuming that a; = oy¢; and
e ~ N(0,1) for all ¢.
We now have estimated returns, §;, model residuals ¢;, and estimated shock variances o?

for every period.

Strategy: suppose that we only ever buy. When we do buy, we buy at open and sell at
close. This is obviously a much more simplistic strategy than we may otherwise support,

but it makes the analysis easier.

So, for each time period ¢, find @,2(f) where @2 is the normal CDF with mean 0
and variance 2. This means that we have a probability of each return being larger than 0

(i.e profitable to invest). Now we have these probabilities for each period t.

It makes sense that the closer that probability is to 0.5, the more we should be wary of the
models predictive accuracy. As a result, we are going to define bounds b > 0.5, such that
we only invest on days where the probability of positive return is larger than b, and do

nothing otherwise.

As b increases, we become more selective about when we trade but also make less trades.
If b were 0.5 on the other hand, then we would be buying on any day that #; > 0. The
strategy therefore is buy on any day where @2 (7¢) > b* for some optimized b*, and do

nothing otherwise.



